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3. Dynamics

The vertically-integrated, time-mean momentum equations can be written:

where upper case symbols indicate vertically-integrated quantities. (U,V) are the velocity

components, P is the pressure and ) is the wind stress. A = (A , A ) = ∫∇"uu dz are the advective      
x y

terms and F = (F , F ) are the (combined) friction terms. Time means must be taken after   
  x y

forming products such as the definition of A. Subscripts indicate partial differentiation, and

factors of #  have been dropped for simplicity of notation. The vertically-integrated mean0

continuity equation is:

A common linearization of (1) retains only the Coriolis, pressure gradient and wind

stress terms:

Taking the curl of (3), substituting from (2) gives the meridional transport associated with the

Sverdrup balance: 

The Sverdrup zonal transport is found from (2), using (4) for V and integrating from the

eastern boundary where U is zero:

where U (y) is the eastern boundary condition (see Appendix). The success of the Sverdrup0

balance in explaining major features of the ocean circulation points to the fundamental

importance of the vorticity in the large-scale dynamics. 

In section 4 we will be interested in diagnosing the importance of the advective and

friction terms in the ocean GCM (section 2c). A simple approach might be to compare the
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terms of (1), noting the size of the advective and friction terms compared to the leading

Coriolis, pressure gradient and wind stress terms. It will be shown that the second-order terms

are small in the model solution (which gives a largely realistic picture of the observed

currents), and that the vertically-integrated momentum balance is principally among the

Ekman and geostrophic terms. However, at the same time the model currents will be seen to

differ substantially from the Sverdrup transports. Resolving this apparent paradox is achieved

by considering the effects of the second-order terms on the vorticity balance.

One way this can be accomplished is to treat the advective and friction terms as

forcing terms; that is, to define a generalized stress )  ≡ )+)′ +)′′, where )′ ≡ −A and*
      

)′′ ≡ F. Equations (1) then are rewritten  

which have the same form as the linearized set (3). Taking the curl of (6) leads to a Sverdrup-

like balance of the form (4) and (5), with ) replaced by ) , in which the effects of the*

advective and friction terms are evaluated through their modification of the vorticity. This

procedure allows all three “forcing” terms to be studied individually and compared, and their

effects linearly added to produce a complete solution. Of course, these are just manipulations

of (1), so the Sverdrup-like U and V obtained from (6) recovers the original U and V. This is

not a method to get solutions to (1), but simply to diagnose the importance of the terms in the

context of the vorticity balance. What is found by this formulation is that the importance of

the second-order terms comes through their derivatives; in particular, their effect on the zonal

current is realized in d[Curl() )]/dy, and these derivatives have quite different spatial patterns*  

than the terms themselves. Although it will be seen that in the model solution the advective

terms A  and A  in (1) have similar magnitudes, A  has much greater significance because inx y x

forming the curl its y-derivatives are much larger than the x-derivatives of A .y

APPENDIX

The boundary condition U (y) in the integral (5) for the Sverdrup zonal transport is0

often assumed to be zero, which is only true for a meridionally-oriented eastern boundary.

When Curl()) is non-zero at a tilted boundary, the Sverdrup relation (4) would imply flow
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normal to the boundary unless there was a corresponding zonal transport U  to make the total0

boundary flow exactly alongshore. This required value of U along the coast is the boundary

condition for the integral (5). 

This boundary condition can be found using the Sverdrup streamfunction

where x (y) is the longitude of the boundary at each latitude. The boundary condition for (A1)e

is 1 = constant, no matter what the boundary slope, since the no-normal flow condition

precludes any 1 contours from intersecting the coast, and we choose 1 = 0 along the

American coast. The meridional derivative of (A1) gives the complete expression for U (using

Liebniz’ Rule):

where the first term on the right hand side is the contribution to U from interior wind forcing,

and the second term is the value of U on the boundary (U  in equation (5)). d[x (y)]/dy in that0 e

term is the boundary slope, which is zero for a meridional coast and positive clockwise. 

On a meridionally-oriented coast, the boundary condition is U  = 0, but in general the0

value is non-zero. For the ERS scatterometer winds and the shape of the American coast, the

values of U  are found to be small compared to the interior term, except along the coast of0

Central America at 8° to 10°N where Curl()) is large and positive (associated with the

Papagayo winds; see Kessler (2001)) and the coast is strongly tilted to the west. In this region

the values of U  derived from (A2) were about −10 m s , which is generally smaller than, but0   
2 −1

comparable to, the interior signal. It is also noted that the above formulation is inadequate to

encompass a zonally-oriented coast, where the slope term becomes infinite. In that case the

dynamics expressed in (2) and (3) that lead to the Sverdrup balance have no steady solution,

which would require additional terms, such as friction. This is relevant to the tropical Pacific

since the coastline of Mexico is zonal at the Gulf of Tehuantepec (near 16°N), which is also a

region where the mean wind stress curl is large. 


